Các dạng bài xích tập Phương trình lượng giác chọn lọc, bao gồm lời giải

Với các dạng bài bác tập Phương trình lượng giác lựa chọn lọc, có lời giải Toán lớp 11 tổng hợp những dạng bài xích tập, 100 bài tập trắc nghiệm tất cả lời giải chi tiết với đầy đủ phương pháp giải, ví dụ minh họa sẽ giúp học sinh ôn tập, biết phương pháp làm dạng bài tập Phương trình lượng giác từ đó đạt điểm cao trong bài thi môn Toán lớp 11.

Bạn đang xem: Phương trình lượng giác có lời giải

*

Cách giải phương trình lượng giác cơ bản

A. Phương thức giải và Ví dụ

- Phương trình sinx = a (1)

♦ |a| > 1: phương trình (1) vô nghiệm.

♦ |a| ≤ 1: hotline α là một trong cung thỏa mãn sinα = a.

lúc đó phương trình (1) có những nghiệm là

x = α + k2π, k ∈ Z

với x = π-α + k2π, k ∈ Z.

Nếu α vừa lòng điều kiện với sinα = a thì ta viết α = arcsin a.

Khi đó các nghiệm của phương trình (1) là

x = arcsina + k2π, k ∈ Z

và x = π - arcsina + k2π, k ∈ Z.

Các ngôi trường hợp đặc biệt:

*

- Phương trình cosx = a (2)

♦ |a| > 1: phương trình (2) vô nghiệm.

♦ |a| ≤ 1: gọi α là 1 trong cung thỏa mãn nhu cầu cosα = a.

Khi đó phương trình (2) có những nghiệm là

x = α + k2π, k ∈ Z

với x = -α + k2π, k ∈ Z.

Nếu α thỏa mãn nhu cầu điều kiện và cosα = a thì ta viết α = arccos a.

Khi đó những nghiệm của phương trình (2) là

x = arccosa + k2π, k ∈ Z

và x = -arccosa + k2π, k ∈ Z.

Các ngôi trường hợp sệt biệt:

*

- Phương trình tanx = a (3)

Điều kiện:

*
Nếu α thỏa mãn nhu cầu điều khiếu nại và tanα = a thì ta viết α = arctan a.

Khi đó những nghiệm của phương trình (3) là

x = arctana + kπ,k ∈ Z

- Phương trình cotx = a (4)

Điều kiện: x ≠ kπ, k ∈ Z.

Nếu α thỏa mãn điều kiện và cotα = a thì ta viết α = arccot a.

Khi đó những nghiệm của phương trình (4) là

x = arccota + kπ, k ∈ Z

Ví dụ minh họa

Bài 1: Giải những phương trình lượng giác sau:

a) sinx = sin(π/6) c) tanx – 1 = 0

b) 2cosx = 1. d) cotx = tan2x.

Hướng dẫn:

a) sin⁡x = sin⁡π/6

*

b)

*

c) tan⁡x=1⇔cos⁡x= π/4+kπ (k ∈ Z)

d) cot⁡x=tan⁡2x

*

Bài 2: Giải các phương trình lượng giác sau:

a) cos2 x - sin2x =0.

b) 2sin(2x – 40º) = √3

Hướng dẫn:

a) cos2x-sin2x=0 ⇔cos2x-2 sin⁡x cos⁡x=0

⇔ cos⁡x (cos⁡x - 2 sin⁡x )=0

*

b) 2 sin⁡(2x-40º )=√3

⇔ sin⁡(2x-40º )=√3/2

*

Bài 3: Giải những phương trình lượng giác sau:

*

Hướng dẫn:

a) sin⁡(2x+1)=cos⁡(3x+2)

*

b)

*

⇔ sin⁡x+1=1+4k

⇔ sin⁡x=4k (k ∈ Z)

Nếu |4k| > 1⇔|k| > 1/4; phương trình vô nghiệm

Nếu |4k| ≤ 1 nhưng k nguyên ⇒ k = 0 .Khi đó:

⇔sin⁡x = 0 ⇔ x = mπ (m ∈ Z)

Cách giải Phương trình bậc hai với một hàm con số giác

A. Cách thức giải & Ví dụ

Định nghĩa:

Phương trình bậc hai so với một hàm con số giác Là phương trình bao gồm dạng :

a.f2(x) + b.f(x) + c = 0

với f(x) = sinu(x) hoặc f(x) = cosu(x), tanu(x), cotu(x).

Xem thêm: Đam Mỹ Hỗ Công - Category Hỗ Công

Cách giải:

Đặt t = f(x) ta có phương trình : at2 + bt +c = 0

Giải phương trình này ta tìm được t, từ đó kiếm được x

Khi đặt t = sinu(x) hoặc t = cosu(x), ta tất cả điều kiện: -1 ≤ t ≤ 1

Ví dụ minh họa

Bài 1: sin2x +2sinx - 3 = 0

*

Bài 2: cos2x – sinx + 2 = 0

*

B. Bài bác tập vận dụng

Bài 1: 1/(sin2 x)+tanx-1=0

Lời giải:

*

*

Bài 2: cosx – sin2x = 0

Lời giải:

*

Bài 3: cos2x + cosx – 2 = 0

Lời giải:

*

Cách giải Phương trình hàng đầu theo sinx cùng cosx

A. Cách thức giải & Ví dụ

Xét phương trình asinx + bcosx = c (1) với a, b là những số thực khác 0.