Quy tắc: Muốn nhân nhị phân số ta đem tử số nhân cùng với tử số, mẫu số nhân với mẫu mã số.

Bạn đang xem: Ôn tập phép nhân và phép chia hai phân số

Ví dụ 1: (dfrac23 imes dfrac59 = dfrac2 imes 53 imes 9 = dfrac1027)

Ví dụ 2: (dfrac34 imes dfrac59 = dfrac3 imes 54 imes 9 = dfrac1536 = dfrac512)

Lưu ý:

+) sau khoản thời gian làm phép nhân nhì phân số, nếu thu được phân số chưa về tối giản thì ta buộc phải rút gọn thành phân số buổi tối giản.

+) khi nhân nhì phân số, sau cách lấy tử số nhân tử số, mẫu mã số nhân chủng loại số, nếu tử số và chủng loại số cùng phân chia hết cho một trong những nào đó thì ta rút gọn luôn, tránh việc nhân lên tiếp nối lại rút gọn.

Ví dụ trở lại với lấy ví dụ như 2 ở mặt trên, ta có thể làm như sau:

(dfrac34 imes dfrac59 = dfrac ot3_1 imes 54 imes ot9_3 = dfrac1 imes 54 imes 3 = dfrac512)


b) Các đặc điểm của phép nhân phân số


+) đặc thù giao hoán : Khi thay đổi chỗ những phân số vào một tích thì tích của chúng không rứa đổi.

+) Tính chất kết hợp: khi nhân một tích nhị phân số cùng với phân số sản phẩm ba, ta rất có thể nhân phân số thứ nhất với tích của nhì phân số còn lại.

+Tính hóa học phân phối: Khi nhân một tổng nhị phân số với phân số đồ vật ba, ta rất có thể nhân theo thứ tự từng phân số của tổng cùng với phân số thứ ba rồi cùng các hiệu quả đó lại với nhau.

+Nhân cùng với số (1):Phân số như thế nào nhân cùng với (1) cũng bởi chính phân số đó.

Lưu ý: ta thường áp dụng các tính chất của phép nhân phân số trong những bài tính nhanh.

2. Phép chia hai phân số

a) Phân số hòn đảo ngược


Phân số hòn đảo ngược của một phân số là phân số hòn đảo ngược tử số thành mẫu số, mẫu mã số thành tử số.


Ví dụ: Phân số hòn đảo ngược của phân số (dfrac23) là phân số (dfrac32).


b) Phép phân chia hai phân số


Quy tắc: muốn chia một phân số cho 1 phân số, ta lấy phân số đầu tiên nhân với phân số thiết bị hai hòn đảo ngược.

Ví dụ : (dfrac34:dfrac25 = dfrac34 imes dfrac52 = dfrac158).

3. Một vài dạng bài tập


a) Tính giá chỉ trị những biểu thức:

Phương pháp giải: Áp dụng các quy tắc tính quý giá biểu thức như ưu tiên tính vào ngoặc trước; biểu thức bao gồm phép nhân, chia, cộng, trừ thì ta tiến hành phép tính nhân, phân chia trước, thực hiện phép cùng trừ sau …

Ví dụ: Tính giá trị biểu thức: (dfrac59 imes dfrac78:dfrac14).

Phương pháp: Biểu thức này chỉ đựng phép nhân với phép chia đề nghị ta tính thứu tự từ trái qua phải.

Cách giải:

$dfrac59 imes dfrac78:dfrac14 = dfrac3572:dfrac14 = dfrac3572 imes dfrac41 = dfrac35 imes ot4_1 ot72_18 imes 1 = dfrac35 imes 118 imes 1 = dfrac3518$

b) kiếm tìm x

Phương pháp giải: Xác định coi (x) vào vai trò gì, từ kia tìm (x) theo các quy tắc đang học.

Ví dụ: kiếm tìm (x) biết:(,,x imes frac1217 = frac851,)

Cách giải:

(eginarraylx imes frac1217 = frac851,,,,,\x = frac851,:frac1217,,\x = ,,frac851, imes frac1712,\x = ,,frac ot8_2 imes ot17_1 ot51_3 imes ot12_3,,\x = frac29,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,endarray)

c) Tính nhanh

Phương pháp giải: Áp dụng các đặc điểm của phép nhân phân số để tính cấp tốc một cách dễ dãi hơn.

Xem thêm: Chứng Minh Rằng Nói Dối Có Hại Cho Bản Thân, Đoạn Văn Chứng Minh Nói Dối Có Hại Cho Bản Thân

Ví dụ: Tính nhanh: (dfrac57 imes dfrac913 + dfrac413 imes dfrac57)

Cách giải:

(dfrac57 imes dfrac913 + dfrac57 imes dfrac413 = dfrac57 imes left( dfrac913 + dfrac413 ight) = dfrac57 imes dfrac1313 = dfrac57 imes 1 = dfrac57)

d) Toán có lời văn

Ví dụ: Một hình bình hành bao gồm độ lâu năm đáy là (dfrac94cm), độ cao tương ứng là (dfrac35cm). Tính diện tích hình bình hành đó.

Cách giải:

Diện tích hình bình hành đó là: (dfrac94 imes dfrac35 = dfrac2720(cm^2))