Cách giải phương trình lượng giác cơ bản

Với giải pháp giải phương trình lượng giác cơ phiên bản Toán lớp 11 gồm đầy đủ phương pháp giải, ví dụ minh họa và bài tập trắc nghiệm có lời giải cụ thể sẽ giúp học viên ôn tập, biết cách làm dạng bài tập phương trình lượng giác từ kia đạt điểm trên cao trong bài bác thi môn Toán lớp 11.

Bạn đang xem: Giải phương trình lượng giác lớp 11

*

A. Cách thức giải và Ví dụ

- Phương trình sinx = a (1)

♦ |a| > 1: phương trình (1) vô nghiệm.

♦ |a| ≤ 1: gọi α là 1 cung vừa lòng sinα = a.

khi ấy phương trình (1) có những nghiệm là

x = α + k2π, k ∈ Z

và x = π-α + k2π, k ∈ Z.

Nếu α thỏa mãn nhu cầu điều khiếu nại và sinα = a thì ta viết α = arcsin a.

Khi đó các nghiệm của phương trình (1) là

x = arcsina + k2π, k ∈ Z

và x = π - arcsina + k2π, k ∈ Z.

Các trường hợp quánh biệt:

*

- Phương trình cosx = a (2)

♦ |a| > 1: phương trình (2) vô nghiệm.

♦ |a| ≤ 1: điện thoại tư vấn α là một trong những cung thỏa mãn cosα = a.

Khi kia phương trình (2) có các nghiệm là

x = α + k2π, k ∈ Z

và x = -α + k2π, k ∈ Z.

Nếu α vừa lòng điều kiện và cosα = a thì ta viết α = arccos a.

Khi đó các nghiệm của phương trình (2) là

x = arccosa + k2π, k ∈ Z

cùng x = -arccosa + k2π, k ∈ Z.

Các trường hợp sệt biệt:

*

- Phương trình tanx = a (3)

Điều kiện:

*
Nếu α vừa lòng điều khiếu nại cùng tanα = a thì ta viết α = arctan a.

Khi đó những nghiệm của phương trình (3) là

x = arctana + kπ,k ∈ Z

- Phương trình cotx = a (4)

Điều kiện: x ≠ kπ, k ∈ Z.

Nếu α thỏa mãn điều khiếu nại và cotα = a thì ta viết α = arccot a.

Khi đó những nghiệm của phương trình (4) là

x = arccota + kπ, k ∈ Z

*

Ví dụ minh họa

Bài 1: Giải những phương trình lượng giác sau:

a) sinx = sin(π/6) c) tanx – 1 = 0

b) 2cosx = 1. d) cotx = tan2x.

Xem thêm: Hoisin Sauce And How Do You Make It At Home? Hoisin Sauce

Bài 2: Giải những phương trình lượng giác sau:

a) cos2 x - sin2x =0.

b) 2sin(2x – 40º) = √3

Bài 3: Giải các phương trình lượng giác sau:

*

Đáp án và giải đáp giải

Bài 1: Giải những phương trình lượng giác sau:

a) sin⁡x = sin⁡π/6

*

b)

*

c) tan⁡x=1⇔cos⁡x= π/4+kπ (k ∈ Z)

d) cot⁡x=tan⁡2x

*

Bài 2: Giải những phương trình lượng giác sau:

a) cos2x-sin2x=0 ⇔cos2x-2 sin⁡x cos⁡x=0

⇔ cos⁡x (cos⁡x - 2 sin⁡x )=0

*

b) 2 sin⁡(2x-40º )=√3

⇔ sin⁡(2x-40º )=√3/2

*

Bài 3: Giải những phương trình lượng giác sau:

a) sin⁡(2x+1)=cos⁡(3x+2)

*

b)

*

⇔ sin⁡x+1=1+4k

⇔ sin⁡x=4k (k ∈ Z)

Nếu |4k| > 1⇔|k| > 1/4; phương trình vô nghiệm

Nếu |4k| ≤ 1 cơ mà k nguyên ⇒ k = 0 .Khi đó:

⇔sin⁡x = 0 ⇔ x = mπ (m ∈ Z)

*

B. Bài tập vận dụng

Bài 1: Giải những phương trình sau

a) cos(3x + π) = 0

b) cos (π/2 - x) = sin2x

Lời giải:

*

*

Bài 2: Giải các phương trình sau

a) sinx.cosx = 1

b) cos2 x - sin2 x + 1 = 0

Lời giải:

*

*

Bài 3: Giải những phương trình sau

a) cos2 x - 3cosx + 2 = 0

b) 1/(cos2 x) - 2 = 0.

Lời giải:

*

*

Bài 4: Giải các phương trình sau: (√3-1)sinx = 2sin2x.

Lời giải:

*

Bài 5: Giải các phương trình sau: (√3-1)sinx + (√3+1)cosx = 2√2 sin2x